2015-04-06 74 views
1

我在OpenCV中使用grabCut來幫助分割背景和前景。通過用戶幫助標記前景和背景項目,我可以得到結果。按質量/像素連接進行像素分組(OpenCV)

但是,結果會帶來很多噪音。即使用戶標記了臉部和身體,我們仍然從外部選擇區域獲取像素。

我可以用什麼樣的技術來幫助清理這一點?由於

grabcut result

回答

2

你可以使用findcontours讓所有輪廓在分割圖像,並刪除所有,但最大的輪廓。

0

與前景相比,所有這些工件看起來都很薄。所以可能有一個適當的窗口大小的中值濾波器可以做到這一點。

這裏維基百科的例子:

Median filter example

1

OpenCV的3.0版公測以來, 「connectedComponents」 功能。您可以計算所有地區的面積並選擇最大面積。

OpenCV中2.4的情況下,你可以從current OpenCV source code到您的項目包括connectedcomponents.cpp 並使用「connectedComponentsWithStats」功能:在「統計」數組包含區域的面積

nLabels = connectedComponentsWithStats(mask, labelImage, stats, centroids, connectivity, CV_32S); 

第五列(索引4) 。

connectedcomponents.cpp:

#include "precomp.hpp" 
#include <vector> 

namespace cv{ 
namespace connectedcomponents{ 

struct NoOp{ 
    NoOp(){ 
    } 
    void init(int /*labels*/){ 
    } 
    inline 
    void operator()(int r, int c, int l){ 
     (void) r; 
     (void) c; 
     (void) l; 
    } 
    void finish(){} 
}; 
struct Point2ui64{ 
    uint64 x, y; 
    Point2ui64(uint64 _x, uint64 _y):x(_x), y(_y){} 
}; 

struct CCStatsOp{ 
    const _OutputArray* _mstatsv; 
    cv::Mat statsv; 
    const _OutputArray* _mcentroidsv; 
    cv::Mat centroidsv; 
    std::vector<Point2ui64> integrals; 

    CCStatsOp(OutputArray _statsv, OutputArray _centroidsv): _mstatsv(&_statsv), _mcentroidsv(&_centroidsv){ 
    } 
    inline 
    void init(int nlabels){ 
     _mstatsv->create(cv::Size(CC_STAT_MAX, nlabels), cv::DataType<int>::type); 
     statsv = _mstatsv->getMat(); 
     _mcentroidsv->create(cv::Size(2, nlabels), cv::DataType<double>::type); 
     centroidsv = _mcentroidsv->getMat(); 

     for(int l = 0; l < (int) nlabels; ++l){ 
      int *row = (int *) &statsv.at<int>(l, 0); 
      row[CC_STAT_LEFT] = INT_MAX; 
      row[CC_STAT_TOP] = INT_MAX; 
      row[CC_STAT_WIDTH] = INT_MIN; 
      row[CC_STAT_HEIGHT] = INT_MIN; 
      row[CC_STAT_AREA] = 0; 
     } 
     integrals.resize(nlabels, Point2ui64(0, 0)); 
    } 
    void operator()(int r, int c, int l){ 
     int *row = &statsv.at<int>(l, 0); 
     row[CC_STAT_LEFT] = MIN(row[CC_STAT_LEFT], c); 
     row[CC_STAT_WIDTH] = MAX(row[CC_STAT_WIDTH], c); 
     row[CC_STAT_TOP] = MIN(row[CC_STAT_TOP], r); 
     row[CC_STAT_HEIGHT] = MAX(row[CC_STAT_HEIGHT], r); 
     row[CC_STAT_AREA]++; 
     Point2ui64 &integral = integrals[l]; 
     integral.x += c; 
     integral.y += r; 
    } 
    void finish(){ 
     for(int l = 0; l < statsv.rows; ++l){ 
      int *row = &statsv.at<int>(l, 0); 
      row[CC_STAT_WIDTH] = row[CC_STAT_WIDTH] - row[CC_STAT_LEFT] + 1; 
      row[CC_STAT_HEIGHT] = row[CC_STAT_HEIGHT] - row[CC_STAT_TOP] + 1; 

      Point2ui64 &integral = integrals[l]; 
      double *centroid = &centroidsv.at<double>(l, 0); 
      double area = ((unsigned*)row)[CC_STAT_AREA]; 
      centroid[0] = double(integral.x)/area; 
      centroid[1] = double(integral.y)/area; 
     } 
    } 
}; 

//Find the root of the tree of node i 
template<typename LabelT> 
inline static 
LabelT findRoot(const LabelT *P, LabelT i){ 
    LabelT root = i; 
    while(P[root] < root){ 
     root = P[root]; 
    } 
    return root; 
} 

//Make all nodes in the path of node i point to root 
template<typename LabelT> 
inline static 
void setRoot(LabelT *P, LabelT i, LabelT root){ 
    while(P[i] < i){ 
     LabelT j = P[i]; 
     P[i] = root; 
     i = j; 
    } 
    P[i] = root; 
} 

//Find the root of the tree of the node i and compress the path in the process 
template<typename LabelT> 
inline static 
LabelT find(LabelT *P, LabelT i){ 
    LabelT root = findRoot(P, i); 
    setRoot(P, i, root); 
    return root; 
} 

//unite the two trees containing nodes i and j and return the new root 
template<typename LabelT> 
inline static 
LabelT set_union(LabelT *P, LabelT i, LabelT j){ 
    LabelT root = findRoot(P, i); 
    if(i != j){ 
     LabelT rootj = findRoot(P, j); 
     if(root > rootj){ 
      root = rootj; 
     } 
     setRoot(P, j, root); 
    } 
    setRoot(P, i, root); 
    return root; 
} 

//Flatten the Union Find tree and relabel the components 
template<typename LabelT> 
inline static 
LabelT flattenL(LabelT *P, LabelT length){ 
    LabelT k = 1; 
    for(LabelT i = 1; i < length; ++i){ 
     if(P[i] < i){ 
      P[i] = P[P[i]]; 
     }else{ 
      P[i] = k; k = k + 1; 
     } 
    } 
    return k; 
} 

//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant 
//using decision trees 
//Kesheng Wu, et al 
//Note: rows are encoded as position in the "rows" array to save lookup times 
//reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods 
const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods 
//reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods 
const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods 
template<typename LabelT, typename PixelT, typename StatsOp = NoOp > 
struct LabelingImpl{ 
LabelT operator()(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){ 
    CV_Assert(L.rows == I.rows); 
    CV_Assert(L.cols == I.cols); 
    CV_Assert(connectivity == 8 || connectivity == 4); 
    const int rows = L.rows; 
    const int cols = L.cols; 
    //A quick and dirty upper bound for the maximimum number of labels. The 4 comes from 
    //the fact that a 3x3 block can never have more than 4 unique labels for both 4 & 8-way 
    const size_t Plength = 4 * (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3); 
    LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength); 
    P[0] = 0; 
    LabelT lunique = 1; 
    //scanning phase 
    for(int r_i = 0; r_i < rows; ++r_i){ 
     LabelT * const Lrow = L.ptr<LabelT>(r_i); 
     LabelT * const Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]); 
     const PixelT * const Irow = I.ptr<PixelT>(r_i); 
     const PixelT * const Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]); 
     LabelT *Lrows[2] = { 
      Lrow, 
      Lrow_prev 
     }; 
     const PixelT *Irows[2] = { 
      Irow, 
      Irow_prev 
     }; 
     if(connectivity == 8){ 
      const int a = 0; 
      const int b = 1; 
      const int c = 2; 
      const int d = 3; 
      const bool T_a_r = (r_i - G8[a][0]) >= 0; 
      const bool T_b_r = (r_i - G8[b][0]) >= 0; 
      const bool T_c_r = (r_i - G8[c][0]) >= 0; 
      for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){ 
       if(!*Irows[0]){ 
        Lrow[c_i] = 0; 
        continue; 
       } 
       Irows[1] = Irow_prev + c_i; 
       Lrows[0] = Lrow + c_i; 
       Lrows[1] = Lrow_prev + c_i; 
       const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0 && *(Irows[G8[a][0]] + G8[a][1]); 
       const bool T_b = T_b_r       && *(Irows[G8[b][0]] + G8[b][1]); 
       const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]); 
       const bool T_d =   (c_i + G8[d][1]) >= 0 && *(Irows[G8[d][0]] + G8[d][1]); 

       //decision tree 
       if(T_b){ 
        //copy(b) 
        *Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]); 
       }else{//not b 
        if(T_c){ 
         if(T_a){ 
          //copy(c, a) 
          *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1])); 
         }else{ 
          if(T_d){ 
           //copy(c, d) 
           *Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1])); 
          }else{ 
           //copy(c) 
           *Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]); 
          } 
         } 
        }else{//not c 
         if(T_a){ 
          //copy(a) 
          *Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]); 
         }else{ 
          if(T_d){ 
           //copy(d) 
           *Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]); 
          }else{ 
           //new label 
           *Lrows[0] = lunique; 
           P[lunique] = lunique; 
           lunique = lunique + 1; 
          } 
         } 
        } 
       } 
      } 
     }else{ 
      //B & D only 
      const int b = 0; 
      const int d = 1; 
      const bool T_b_r = (r_i - G4[b][0]) >= 0; 
      for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){ 
       if(!*Irows[0]){ 
        Lrow[c_i] = 0; 
        continue; 
       } 
       Irows[1] = Irow_prev + c_i; 
       Lrows[0] = Lrow + c_i; 
       Lrows[1] = Lrow_prev + c_i; 
       const bool T_b = T_b_r       && *(Irows[G4[b][0]] + G4[b][1]); 
       const bool T_d =   (c_i + G4[d][1]) >= 0 && *(Irows[G4[d][0]] + G4[d][1]); 
       if(T_b){ 
        if(T_d){ 
         //copy(d, b) 
         *Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1])); 
        }else{ 
         //copy(b) 
         *Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]); 
        } 
       }else{ 
        if(T_d){ 
         //copy(d) 
         *Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]); 
        }else{ 
         //new label 
         *Lrows[0] = lunique; 
         P[lunique] = lunique; 
         lunique = lunique + 1; 
        } 
       } 
      } 
     } 
    } 

    //analysis 
    LabelT nLabels = flattenL(P, lunique); 
    sop.init(nLabels); 

    for(int r_i = 0; r_i < rows; ++r_i){ 
     LabelT *Lrow_start = L.ptr<LabelT>(r_i); 
     LabelT *Lrow_end = Lrow_start + cols; 
     LabelT *Lrow = Lrow_start; 
     for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){ 
      const LabelT l = P[*Lrow]; 
      *Lrow = l; 
      sop(r_i, c_i, l); 
     } 
    } 

    sop.finish(); 
    fastFree(P); 

    return nLabels; 
}//End function LabelingImpl operator() 

};//End struct LabelingImpl 
}//end namespace connectedcomponents 

//L's type must have an appropriate depth for the number of pixels in I 
template<typename StatsOp> 
static 
int connectedComponents_sub1(const cv::Mat &I, cv::Mat &L, int connectivity, StatsOp &sop){ 
CV_Assert(L.channels() == 1 && I.channels() == 1); 
CV_Assert(connectivity == 8 || connectivity == 4); 

int lDepth = L.depth(); 
int iDepth = I.depth(); 
using connectedcomponents::LabelingImpl; 
//warn if L's depth is not sufficient? 

CV_Assert(iDepth == CV_8U || iDepth == CV_8S); 

if(lDepth == CV_8U){ 
    return (int) LabelingImpl<uchar, uchar, StatsOp>()(I, L, connectivity, sop); 
}else if(lDepth == CV_16U){ 
    return (int) LabelingImpl<ushort, uchar, StatsOp>()(I, L, connectivity, sop); 
}else if(lDepth == CV_32S){ 
    //note that signed types don't really make sense here and not being able to use unsigned matters for scientific projects 
    //OpenCV: how should we proceed? .at<T> typechecks in debug mode 
    return (int) LabelingImpl<int, uchar, StatsOp>()(I, L, connectivity, sop); 
} 

CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type"); 
return -1; 
} 

} 

int cv::connectedComponents(InputArray _img, OutputArray _labels, int connectivity, int ltype){ 
const cv::Mat img = _img.getMat(); 
_labels.create(img.size(), CV_MAT_DEPTH(ltype)); 
cv::Mat labels = _labels.getMat(); 
connectedcomponents::NoOp sop; 
if(ltype == CV_16U){ 
    return connectedComponents_sub1(img, labels, connectivity, sop); 
}else if(ltype == CV_32S){ 
    return connectedComponents_sub1(img, labels, connectivity, sop); 
}else{ 
    CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s"); 
    return 0; 
} 
} 

int cv::connectedComponentsWithStats(InputArray _img, OutputArray _labels, OutputArray statsv, 
           OutputArray centroids, int connectivity, int ltype) 
{ 
const cv::Mat img = _img.getMat(); 
_labels.create(img.size(), CV_MAT_DEPTH(ltype)); 
cv::Mat labels = _labels.getMat(); 
connectedcomponents::CCStatsOp sop(statsv, centroids); 
if(ltype == CV_16U){ 
    return connectedComponents_sub1(img, labels, connectivity, sop); 
}else if(ltype == CV_32S){ 
    return connectedComponents_sub1(img, labels, connectivity, sop); 
}else{ 
    CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s"); 
    return 0; 
} 
}