2016-12-04 79 views
2

我知道這裏有一些類似的問題,但他們都沒有真正解決我的問題。Python:繪製一個整體

我的代碼如下所示:

import numpy 

import matplotlib.pyplot as plt 

from scipy import integrate as integrate 

def H(z , omega_m , H_0 = 70): 

    omega_lambda=1-omega_m 
    z_prime=((1+z)**3) 
    wurzel=numpy.sqrt(omega_m*z_prime + omega_lambda) 

    return H_0*wurzel 



def H_inv(z, omega_m , H_0=70): 

    return 1/(H(z, omega_m, H_0=70)) 

def integral(z, omega_m , H_0=70): 

    I=integrate.quad(H_inv,0,z,args=(omega_m,)) 
    return I 


def d_L(z, omega_m , H_0=70): 

    distance=(2.99*(10**8))*(1+z)*integral(z, omega_m, H_0=70) 

    return distance 

的功能做的工作,我的問題:我如何可以繪製D_L與Z'就像這顯然是一個問題,我在我的d_L的定義中有這個整數函數,它依賴於z和一些args =(omega_m,)。

+0

你可以舉一個'z'的例子,你如何在'd_L'中使用它? –

+0

最後,z應該有足夠的步數(500+)從0運行到2。 – user7248647

回答

0

要建立在@ eyllanesc的解決方案,這裏是你如何繪製歐米茄的幾個值:

import numpy 

import matplotlib.pyplot as plt 

from scipy import integrate 


def H(z, omega_m, H_0=70): 
    omega_lambda = 1 - omega_m 
    z_prime = ((1 + z) ** 3) 
    wurzel = numpy.sqrt(omega_m * z_prime + omega_lambda) 

    return H_0 * wurzel 


def H_inv(z, omega_m, H_0=70): 
    return 1/(H(z, omega_m, H_0=70)) 


def integral(z, omega_m, H_0=70): 
    I = integrate.quad(H_inv, 0, z, args=(omega_m,))[0] 
    return I 


def d_L(z, omega_m, H_0=70): 
    distance = (2.99 * (10 ** 8)) * (1 + z) * integral(z, omega_m, H_0) 
    return distance 

z0 = -1.8 
zf = 10 
zs = numpy.linspace(z0, zf, 1000) 

fig, ax = plt.subplots(nrows=1,ncols=1, figsize=(16,9)) 

for omega_m in np.linspace(0, 1, 10): 
    d_Ls = numpy.linspace(z0, zf, 1000) 
    for index in range(zs.size): 
     d_Ls[index] = d_L(zs[index], omega_m=omega_m) 
    ax.plot(zs,d_Ls, label='$\Omega$ = {:.2f}'.format(omega_m)) 
ax.legend(loc='best') 
plt.show() 

Plot with multiple lines

+1

我真的很感謝你的努力。這完全是我想要的! 我沒有想到如此快速和準確的反饋 – user7248647

1

嘗試用我的解決方案:

import numpy 

import matplotlib.pyplot as plt 

from scipy import integrate 


def H(z, omega_m, H_0=70): 
    omega_lambda = 1 - omega_m 
    z_prime = ((1 + z) ** 3) 
    wurzel = numpy.sqrt(omega_m * z_prime + omega_lambda) 

    return H_0 * wurzel 


def H_inv(z, omega_m, H_0=70): 
    return 1/(H(z, omega_m, H_0=70)) 


def integral(z, omega_m, H_0=70): 
    I = integrate.quad(H_inv, 0, z, args=(omega_m,))[0] 
    return I 


def d_L(z, omega_m, H_0=70): 
    distance = (2.99 * (10 ** 8)) * (1 + z) * integral(z, omega_m, H_0) 
    return distance 

z0 = -1.8 
zf = 10 
zs = numpy.linspace(z0, zf, 1000) 
d_Ls = numpy.linspace(z0, zf, 1000) 
omega_m = 0.2 

for index in range(zs.size): 
    d_Ls[index] = d_L(zs[index], omega_m=omega_m) 
plt.plot(zs,d_Ls) 
plt.show() 

輸出:

enter image description here

+1

非常感謝,這實際上看起來像我想要的陰謀! 我將需要幾分鐘/小時來了解這些變化,因爲我對python非常陌生。 你認爲如何將這種情況繪製成同一個數字的omega_m的不同值呢? – user7248647

+0

@ user7248647 首先,如果我的回答會幫助你標記爲正確的 – eyllanesc